US009378360B2

a2 United States Patent 10) Patent No.: US 9,378,360 B2
Stiemens (45) Date of Patent: Jun. 28, 2016
(54) SECURE IF ANTECEDENT (56) References Cited
(71) Applicant: FLEXERA SOFTWARE LLC, Itasca, U.S. PATENT DOCUMENTS
1L (US)
6,880,083 B1* 4/2005 Korncccceovvevvvenn. 713/170
. : : 8,490,052 B2* 7/2013 Shukla et al. 717117
(72) Inventor: Alan Walter Stiemens, Reading (GB) 2009/0049308 AL* 22009 Jinetal ... s
R 2014/0012963 Al* 12014 S tal., oo 709/220
(73) Assignee: FLEXERA SOFTWARE LLC, Ttasca, enson e
1L (US) * cited by examiner
(*) Notice: Subject to any disclaimer, the term of this Primary Examiner — Ali Abyaneh
patent is extended or adjusted under 35 (74) Attorney, Agent, or Firm — Michael A. Glenn; Perkins
U.S.C. 154(b) by 113 days. Coie LLP
(21) Appl. No.: 14/313,902 (57) ABSTRACT
(22) Filed: Jun. 24, 2014 Hostile attacks against a computer program are prevented
when the program is executed in a computing environment
(65) Prior Publication Data that is controlled by the attacker. A preposition is run in a
US 2015/0371037 Al Dec. 24. 2015 secure computing environment instead of the original call
Y site, i.e. the IF antecedent, which has a TRUE consequence
(51) Int.CL and a FALSE consequence are run in a secure computing
GO6F 11/00 (2006.01) environment. Embodiments of the invention also allow an
GO6F 21/54 (2013.01) insecure call site to detect modifications by a hostile attacker
(52) U.S.CL surreptitiously. In embodiments of the invention, a script is
CPC oo GO6F 21/54 (2013.01) generated by a script generator from the IF antecedent and
(58) Field of Classification Search TRUE and FALSE consequence source code, for example

CPC GOG6F 21/57;, GOG6F 21/53; GOGF 21/6218,;

GOG6F 21/51; GOGF 21/64; GOGF 21/72;

HO4L 63/1416; HO4L 63/1408; HO4L 63/145

USPC ittt 726/22
See application file for complete search history.

relative to a call site. The original source code is modified to
call the script engine, rather than the preposition. At run-time
a script engine executes this script.

23 Claims, 7 Drawing Sheets

50 51 .
User Native Secure
Input Code Ening

[T] et Randy)
Get Challenge) /Qt:he:l/(i' =1+ rand

55~ ,—@ackeb
Is_allowed(challenge) "\ /

~)

<

<

On_false()
547

8
On_true()

U.S. Patent Jun. 28, 2016 Sheet 1 of 7 US 9,378,360 B2

~10
IF
antecedent
1o~ / \ 14
TRUE FALSE
consequence consequence
FIG. 1
20
22
Call site . Script generator
~10 12 14
IF TRUE FALSE
antecedent consequence consequence

FIG. 2

US 9,378,360 B2

Sheet 2 of 7

Jun. 28, 2016

U.S. Patent

dajs
pling-1sod

€ 94

9/qLIN9aX9
[eul] 0]
10L3S VH L ppY

quI7 e 8)1dwo) ddd / 9

A

)
&
\!
{
S
4

i3S,

0c-

ofl]

J° pue | Sojelauak)

9/IJ uonelauab yH|

US 9,378,360 B2

Sheet 3 of 7

Jun. 28, 2016

U.S. Patent

] _9p
V4 \\\\\\\\\\\\\\\\\v [

\\ aineubis
—— ~ 19peof N
7 "l j00g pardfioug T—6#

gp0J) -
Ll aiAg pajdfioug ~#p
auibug ~~—gp
8p0,) e
\
S—op
1dlias 1011as

Y| dAeIadLLf VY[8AeIe28(

\ \\ [

2r—" T

U.S. Patent Jun. 28, 2016 Sheet 4 of 7 US 9,378,360 B2

r 50 /51 f52
User Native Secure
Input Code Engine

Set Rand()

o
L

Check: = 1 + rand
Get Challenge() | jt i it fan

20~ Hacked
Is_allowed(challenge) “\.?

T

93
On_true()

-
Ll

On_false()
54~

FIG. 5

U.S. Patent Jun. 28, 2016 Sheet 5 of 7 US 9,378,360 B2

s 50 e 51 s 52
User Native Secure
Input Code Engine

y

Create State

Check: = 1 + rand
Set Rand() jit: = it

v

60~ SNIF
is_allowed(challenge) | Get Challenge()

M Check: -= rand
((response Check: -= expected
Check: + = response
L Reply = t/f | Reply: = t/f

Y

\

true Reply and
61 e (response is as
On_true() expected)
Get() Reply and
, (response is as
It expected)
62~)
On_false()

FIG. 6

U.S. Patent Jun. 28, 2016 Sheet 6 of 7 US 9,378,360 B2

e 50 s 51 r 52
User Native Secure
Input Code Engine

Create State

Y

_ Check: = 1 + rand
Set(it) ft: =1t

Yy

70~ SNIF
is_allowed(challenge)
Check: -= rand

((response Check: -= expected

Check: + = response
L tf Reply: = t/f

1A

A

\ i

true Reply and
7T~ | (response is as
On_true() expected)

1A

Y

Get() Reply and
. (response is as
it expected)

A

72~
On_false()

FIG. 7

US 9,378,360 B2

Sheet 7 of 7

Jun. 28, 2016

U.S. Patent

8 94
Jajdepy yiomiap (S)a2118q 0} (Mwwm_mq
£9-/ 79/ E7 0%
98-
Alowspy (5)1055890.4
18- c9/
08 S

US 9,378,360 B2

1
SECURE IF ANTECEDENT

FIELD

The invention relates to computer security. More particu-
larly, the invention relates to preventing hostile attacks
against a computer program when the program is executed in
a computing environment that is controlled by the attacker.

BACKGROUND

It is relatively simple for a hostile attacker to thwart the
intentions of the author of a computer program when the
program is executed in a computing environment that is con-
trolled by the attacker. Digital signature checks can be
skipped and object code modified. For example, a piece of
source code that is written to check that the computer program
has been purchased could consist of the preposition: “if pur-
chased, run or else fail” An attacker can alter the object code
to jump straight to the true consequence even if the antecedent
is false.

SUMMARY

Embodiments of the invention prevent hostile attacks
against a computer program when the program is executed in
a computing environment that is controlled by the attacker. A
preposition is run in a secure computing environment instead
of the original call site, i.e. an IF antecedent, which has a
TRUE consequence and a FALSE consequence is run in a
secure computing environment. Embodiments of the inven-
tion also allow an insecure call site to detect modifications by
a hostile attacker surreptitiously.

In embodiments of the invention, a script is generated by a
script generator from the IF antecedent and TRUE and
FALSE consequence source code, for example relative to a
call site. The original source code is modified to call the script
engine, rather than the preposition. At run-time a script
engine executes this script.

DESCRIPTION OF THE DRAWINGS

FIG. 1 is a block schematic diagram showing an IF ante-
cedent having a TRUE and FALSE consequence;

FIG. 2 is a block schematic diagram showing the genera-
tion of a script from antecedent and consequence source code
according to the invention;

FIG. 3 is a block schematic showing implementation of an
IF antecedent according to the invention;

FIG. 4 is a block schematic diagram showing the compo-
nents of an IF antecedent script according to the invention;

FIG. 5 is a flow diagram showing operation of a scripted IF
antecedent according to the invention;

FIG. 6 is a flow diagram showing a second example of
operation of a scripted IF antecedent according to the inven-
tion;

FIG. 7 is a flow diagram showing a second example of
operation of a scripted IF antecedent according to the inven-
tion; and

FIG. 8 is a block schematic diagram showing a machine in
the example form of a computer system within which a set of
instructions for causing the machine to perform one or more
of the methodologies discussed herein may be executed.

DETAILED DESCRIPTION

Embodiments of the invention prevent hostile attacks
against a computer program when the program is executed in

10

20

25

30

35

40

45

50

55

60

65

2

a computing environment that is controlled by the attacker.
Embodiments of the invention also allow an insecure call site
to detect modifications by a hostile attacker surreptitiously.
Applications of the invention include entitlement enforce-
ment, activity monitors, game play, system safety checks, etc.
on any of smart phones and devices and desktops. The inven-
tion is useful anywhere where there is an opportunity for an
attacker to gain an unfair advantage by modifying software.

FIG. 1 is a block schematic diagram showing an IF ante-
cedent having a TRUE and FALSE consequence. The IF
antecedent can be best thought of as an IF statement, in which
a first condition is TRUE, i.e. if an expected value is received
or an expected call is made in the proper way, then the pro-
gram receives an expected response and execution proceeds;
and if a value other than an expected value is received, then
the program has been compromised and an action is taken,
such as returning program execution to a start instruction.

Accordingly, embodiments of the invention run a preposi-
tion in a secure computing environment instead of the original
call site, i.e. an IF antecedent 10, which has a TRUE conse-
quence 12 and a FALSE consequence 14 is called from an
executing program and run in a secure computing environ-
ment. An expected result is a TRUE consequence; an unex-
pected result, for example as may be attributed to an attack, is
a FALSE consequence.

FIG. 2 is a block schematic diagram showing the genera-
tion of a script from antecedent and consequence source code
according to the invention. In embodiments of the invention,
a script is generated by a script generator 20 from the IF
antecedent 10 and TRUE and FALSE consequence 12, 14
source code, for example relative to a call site 22, such as an
executing computer program. The original source code is
modified by the authorto call the script engine, rather than the
preposition. At run-time a script engine executes this script. In
embodiments of the invention the script engine could be, but
is not limited to, a software interpreter and the secure envi-
ronment could be, but is not limited to, a secure processor or
other secure processing environment.

The script can also define the actions that should be
executed after processing the antecedent. For example, the
script could instruct the engine to validate its own address
space, or another module for modification. Embodiments of
the invention thus detect, for example, tampering and take a
deterministic action when such tampering is detected. This
approach is fault tolerant in that the antecedent determines a
correct path, based upon execution of the script. Attacks are
treated as errors. Thus, either a TRUE path or a FALSE path
is a correct path, but each path indicates compliant execution
of'the program, i.e. the TRUE path, or deviant program behav-
iour associated with an attack, i.e. the FALSE path.

A script generator run in a computing environment con-
trolled by the author is used to generate the run-time script. In
embodiments of the invention, the script is encrypted using
standard symmetric encryption algorithms with the key
defined by the author in the code generation script. The key
for the decryption is embedded in the boot loader. Thus,
pre-processing occurs in which the script is declared as a data
field in the native source code of the program. A series ofkeys
are added in a post-processing phase, i.e. the script generates
aliases for values that are difficult to know. The pre-process,
generated, shared secret keys, are stored in the data field in the
native source code, as well as in the source code header files
of the native code. Additional keys that are stored in the boot
loader are injected into the application as part of the post build
process. This build process is discussed in greater detail
below.

US 9,378,360 B2

3

Actions taken in response to the execution of the script are
a function of entry and exit to the secure environment. Thus,
embodiments of the invention check sections of the code
during runtime for unauthorized modifications. The program
calls the antecedent and an action is taken, such as a checksum
of the native code, and the script determines if the code has
changed. Thus, a check value may be applied, where the value
is inside the secure engine, and where the value is modified
depending on proper progress of the code. The value is used
to ensure that various consequences, such as authorization, do
notoccur unless they are desired. In this way, the script serves
a role akin to that of a gatekeeper.

The native code thus calls into the script and the script
returns a value indicating that it ran properly. The native code,
for example, can provide a check value to the script and wait
for the script to return a value that is expected upon proper
completion of the script. This process can take place repeat-
edly during execution of the program with a series of calls to
the script in the secure environment, where the value is
repeatedly changed and where a different, expected value is
returned after each call to the antecedent and thus to the script.
At the end of this process, a correct value is returned. If not,
the program can be forced to follow a proper path. For
example, if the program has been hacked, then the correct
pathis to instruct the program to exit. Thus, rather than bypass
aneeded step in authorizing use of a program, the program is
forced to, for example, return to a start screen, and is not
allowed to progress to an operative state. In other embodi-
ments, an action may be taken to provide an alert to a system
administrator that auser is trying to compromise the program.

The antecedent and consequences are not called directly
from the modified source code, and are only called by the
script engine. Because the script engine has no knowledge of
the call backs, there is no advantage in statically analysing the
code to see the control flow. In fact, a complete static analysis
of the code would show an orphaned function for the conse-
quence.

For additional security, an obfuscated script engine with
changeable operation codes could be used. The engine could
be configured to understand only code that has been compiled
and encrypted by the author.

A script can be generated from the source code of the
preposition to call back to the source code for parts of the code
that cannot be converted to script when run in a script engine,
for example, calls to external modules, such as system calls
and calls to third party modules. For additional security, an
attack on the call back can be mitigated against by including
additional call backs where a negative or different result is
expected.

The script engine evaluates the results of the antecedent
and calls the TRUE or FALSE consequence. It should be
noted that the consequence is also able to call the script
engine. Moreover, the script engine could verify that the
object code has not been modified since being launched. For
additional security the engine could also check that the code
has been modified to a new, expected known value.

Further inter-locking of the antecedent and the conse-
quence is achieved by retaining state in the script engine. This
state is incrementally modified by each stage of the anteced-
ent and call back. The state is then used in the consequence to
perform some critical task, such that even if verification that
the object code has not been modified is thwarted, or the
antecedent is modified or bypassed, the consequence still
behaves in an incorrect or unexpected fashion controlled by
the author.

10

15

20

25

30

35

40

45

50

55

60

65

4

For additional security the antecedent or the consequence
could make further calls to test some other antecedent and
alter behaviour based on the success or otherwise of these
calls.

For additional security the generated script can follow a
different execution path on each invocation, making it hard
for an attacker to compare the code flow in the engine.

For added security, the engine contains a state item that can
be addressed by multiple externally unrelated aliases. This
makes it hard for an attacker to know which state item is being
operated on at any instance.

Use Cases

Use Case #1

Attack: The attacker modifies the object code to not call the
engine, and instead call the desired consequence directly.

Result: The consequence would not work because the
modifications of the state, required by the consequence will
not have been made by the engine.

Use Case #2

Attack: The attacker modifies the object code to not call the
engine, and instead call the antecedent and desired conse-
quence directly.

Result: The consequence would not work because the state
of the engine, required by the consequence has not been set.
This use case occurs if some result from the antecedent is
required by the consequence.

Use Case #3

Attack: The attacker modifies the object code to fool the
engine to think the memory has not been tampered with and
then calls the antecedent and desired consequence directly.

Result: The consequence would not work because the state
of the engine, required by the consequence has not been set.

While embodiments of the invention use license availabil-
ity as an example preposition, the invention is equally appli-
cable to any preposition where the author of the preposition
does not want it to be thwarted but a hostile attacker does want
to thwart it. Other examples are prepositions which enforce
policy restrictions, those that perform system safety checks,
or those which monitor activity. The invention can also be
used to thwart an attacker’s attempt to increase their game
high score and thus ruin the competitive environment for
other players.

Build Process

FIG. 3 is a block schematic showing implementation of an
IF antecedent according to the invention. Embodiments of the
invention are implemented in three phases including pre-
build, compilation, and post build. In a first, pre-build phase
30, a script is prepared in which the antecedent and conse-
quences of the IF statement are declared, and any actions that
may be taken are defined, e.g. perform a checksum. During a
second, compilation phase 31, the antecedent is compiled as
acall, for example, into a library or to a network asset. During
a third, post-build phase 32, references to the antecedent are
stripped, i.e. unnecessary information is removed from
executable binary programs and object files. The address of
the antecedent is only known to a secure environment.
Because there is no reference to the antecedent in the native
code, a static analysis does not reveal the antecedent. Finally,
the application can be signed 33.

The pre-build phase uses a TRA file to generate a header
and a C file. The generated C file is added to the list of source
files that are compiled into the application. The header file
includes, for example, one or more generated function proto-
types, predefined alias values, shared secret keys, an array of
functions that might be referenced by the TRA engine,
encrypted byte code used by the script engine, and a reserved
data area for the boot-loader.

US 9,378,360 B2

5

The post-build process generates the boot-loader byte code
and injects it into the reserved data area. This step also strips
the references to the functions called by the TRA engine.

FIG. 4 is a block schematic diagram showing the compo-
nents of an IF antecedent script according to the invention. A
TRA enabled application consists of the native code 40 and a
linked in protection engine 43. A declarative data file 41
defines the configuration used to generate the scripts that are
used to control the protection engine. Certificate details can
also be specified in the declarative script. The engine gener-
ates a header file that is used by the native code to access items
in the engine. An imperative script 42 is compiled and
encrypted as byte code 44 that is built into the application. As
part of the post-build phase, the native code is check summed
and a bootloader loader 45 is injected into the application.
Finally the code can be signed 46. This signature can now be
certified 47 by the OS as well as at runtime by the application
itself.

EXAMPLES

FIG. 5 is a flow diagram showing an example of operation
of'a scripted IF antecedent according to the invention. In FIG.
5, native code 51 is modified in accordance with embodiment
of'the invention by moving a challenge into the secure engine
52. A user interacts with the native code via various user
inputs 50. If the code is not modified, then an Is_allowed
(challenge) 55 and response executed in the secure engine
returns code execution to call on_true() 53. If the memory is
modified, thenon_false()54 is called, indicating that the code
has been hacked.

FIG. 6 is a flow diagram showing a second example of
operation of a scripted IF antecedent according to the inven-
tion. In FIG. 6, two attacks are shown as follows:

Attack 1: jam return true from Is_allowed() 60 . . .
On_false 61 called as response is not as expected.

Attack 2: jump to On_true() 61 skipping Is_allowed()
60 . .. On_false 61 called as Get() does not find response as
expected.

FIG. 7 is a flow diagram showing a third example of opera-
tion of a scripted IF antecedent according to the invention. In
FIG. 7, two attacks are shown as follows:

Attack 1: jam return true from Is_allowed() 70 . . .
On_false 72 called as response is not as expected.

Attack 2: jump to On_true() 72 skipping Is_allowed()
70 . .. On_{false 71 called as Get() does not find response as
expected.

Computer Implementation

FIG. 8 is a block diagram of a computer system that may be
used to implement certain features of some of the embodi-
ments of the invention. The computer system may be a server
computer, a client computer, a personal computer (PC), auser
device, a tablet PC, a laptop computer, a personal digital
assistant (PDA), a cellular telephone, an iPhone, an iPad, a
Blackberry, a processor, a telephone, a web appliance, a net-
work router, switch or bridge, a console, a hand-held console,
a (hand-held) gaming device, a music player, any portable,
mobile, hand-held device, wearable device, or any machine
capable of executing a set of instructions, sequential or oth-
erwise, that specify actions to be taken by that machine.

The computing system 80 may include one or more central
processing units (“processors”) 85, memory 81, input/output
devices 84, e.g. keyboard and pointing devices, touch
devices, display devices, storage devices 82, e.g. disk drives,
and network adapters 83, e.g. network interfaces, that are
connected to an interconnect 86.

20

30

35

40

45

50

55

65

6

In FIG. 8, the interconnect is illustrated as an abstraction
that represents any one or more separate physical buses,
point-to-point connections, or both connected by appropriate
bridges, adapters, or controllers. The interconnect, therefore,
may include, for example a system bus, a peripheral compo-
nent interconnect (PCI) bus or PCI-Express bus, a Hyper-
Transport or industry standard architecture (ISA) bus, a small
computer system interface (SCSI) bus, a universal serial bus
(USB), IIC (12C) bus, or an Institute of Electrical and Elec-
tronics Engineers (IEEE) standard 1394 bus, also referred to
as Firewire.

The memory 81 and storage devices 82 are computer-
readable storage media that may store instructions that imple-
ment at least portions of the various embodiments of the
invention. In addition, the data structures and message struc-
tures may be stored or transmitted via a data transmission
medium, e.g. a signal on a communications link. Various
communications links may be used, e.g. the Internet, a local
area network, a wide area network, or a point-to-point dial-up
connection. Thus, computer readable media can include com-
puter-readable storage media, e.g. non-transitory media, and
computer-readable transmission media.

The instructions stored in memory 81 can be implemented
as software and/or firmware to program one or more proces-
sors to carry out the actions described above. In some embodi-
ments of the invention, such software or firmware may be
initially provided to the processing system 80 by download-
ing it from a remote system through the computing system,
e.g. via the network adapter 83.

The various embodiments of the invention introduced
herein can be implemented by, for example, programmable
circuitry, e.g. one or more microprocessors, programmed
with software and/or firmware, entirely in special-purpose
hardwired, i.e. non-programmable, circuitry, or in a combi-
nation of such forms. Special-purpose hardwired circuitry
may be in the form of, for example, one or more ASICs, PL.Ds,
FPGAs, etc.

Although the invention is described herein with reference
to the preferred embodiment, one skilled in the art will readily
appreciate that other applications may be substituted for those
set forth herein without departing from the spirit and scope of
the present invention. Accordingly, the invention should only
be limited by the Claims included below.

The invention claimed is:
1. A computer implemented method for preventing hostile
attacks against a computer program, comprising:

providing a processor executing instructions for running a
preposition in a secure computing environment separate
from an original call site within native program code of
the computer program, said preposition comprising an
IF antecedent having a TRUE consequence and a
FALSE consequence;

said processor providing a different response for each con-
sequence; and

said computer program executing the native program code
in a computing environment that is controlled by an
attacker;

said native program code providing a check value to a
script in said secure computing environment and waiting
for said script to return a value that is expected upon
proper completion of the script; and

repeatedly providing a check value to said script in said
secure computing environment during execution of the
native program code with a series of calls to the script in
said secure computing environment, where the check

US 9,378,360 B2

7

value is repeatedly changed by the native program code
and where a different expected value is returned after
each call; and

wherein a hostile attack is detected when the check value
returned by the call is not the expected value.

2. The method of claim 1, further comprising:

generating a script with a script engine from the IF ante-
cedent and TRUE and FALSE consequence original
source code relative to said original call site;

modifying said original source code to call the script
engine, rather than the preposition; and

executing said script with said script engine at run time.

3. The method of claim 2, further comprising:

said script defining actions to be executed after processing
said IF antecedent.

4. The method of claim 2, further comprising:

said script instructing said script engine to validate any of
its own address space or another module for modifica-
tion.

5. The method of claim 2, further comprising:

encrypting said script using standard symmetric encryp-
tion algorithms with a key defined by an author.

6. The method of claim 2, further comprising:

declaring said script as a data field in the native program
code of the computer program.

7. The method of claim 2, further comprising:

adding a series ofkeys to said script that serve as aliases for.

8. The method of claim 2, further comprising:

providing a check value, where the check value exists
inside said secure computing environment; and

modifying said check value depending on proper execution
of the native program code.

9. The method of claim 2, further comprising:

using an obfuscated script engine with changeable opera-
tion codes.

10. The method of claim 2, further comprising:

said script engine evaluating results of said antecedent and
calling the TRUE or FALSE consequence.

11. The method of claim 2, further comprising:

said TRUE or FALSE consequence calling said script
engine.

12. The method of claim 2, further comprising:

said script engine verifying that the native program code
has not been modified since being launched.

13. The method of claim 2, further comprising:

said script engine checking that the native program code
has been modified to a new expected known value.

14. The method of claim 2, further comprising:

retaining state in the script engine to inter-lock the IF
antecedent and the TRUE or FALSE consequence.

15. The method of claim 14, further comprising:

incrementally modifying the state by each stage of the IF
antecedent and calling back; and

using said state in the TRUE or FALSE consequence to
perform a critical task.

20

35

40

45

50

55

8

16. The method of claim 2, further comprising:

either or both of said I F antecedent and said TRUE or
FALSE consequence making further calls to test another
IF antecedent; and

altering behavior based on the success or otherwise of said
calls.

17. The method of claim 2, further comprising:

said script following a different execution path on each
execution of said script.

18. The method of claim 2, further comprising:

said script engine containing a state item that is addressable
by multiple externally unrelated aliases.

19. The method of claim 1, further comprising:

checking sections of the native program code during runt-
ime for unauthorized modifications made by the
attacker.

20. The method of claim 1, further comprising:

said native program code calling into a script within said
secure computing environment; and

said script returning a value indicating proper execution of
said native program code.

21. The method of claim 1, further comprising:

generating a script from source code of said preposition to
call back to said source code for parts of the code that are
not converted to a script when run in a script engine.

22. The method of claim 21, further comprising:

generating additional call backs where a negative or differ-
ent result is expected.

23. A computer implemented method for preventing hos-

tile attacks against a computer program, the method compris-
ing:

providing specific instructions to a processor for running a
preposition in a secure computing environment separate
from an original call site within native program code of
the computer program;

wherein the preposition is a segment of the native program
code;

wherein the preposition comprises an IF antecedent having
a TRUE consequence and a FALSE consequence; and

wherein all references to the preposition are stripped from
the native program code;

said processor providing distinct responses for the TRUE
consequence and the FALSE consequence;

said computer program executing the native program code
in a computing environment that is controlled by an
attacker;

said native program code providing a check value to a
script in said secure computing environment and waiting
for said script to return a value that is expected upon
proper completion of the script; and

repeatedly providing a check value to said script in said
secure computing environment during execution of the
native program code with a series of calls to the script in
the secure environment, where the check value is repeat-
edly changed by the native program code and where a
different expected value is returned after each call; and

wherein a hostile attack is detected when the check value
returned by the call is not the expected value.

#* #* #* #* #*

